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Abstract 
Electron diffraction intensities are not simply related to 
the corresponding structure factors except in the case 
of 'dynamical extinctions'. These extinctions, explained 
by Gj~nnes & Moodie [Acta Cryst. (1965), 19, 65-67], 
occur for reflections that are kinematically forbidden - 
thus the resulting intensity is zero. If it was possible to 
find conditions when 'dynamical extinction' occurs for 
reflections that are not forbidden, it would be possible to 
use electron diffraction intensities for the determination 
of structure factors in a simple way. Unfortunately, it 
can be shown that this is not possible. 

Introduction 

A student asked me the following question: 'If G-M 
lines can be understood as the result of pair-wise can- 
cellation of multiple-diffraction routes in the case of 
reflections that are kinematically forbidden, can this 
same cancellation occur for a reflection that is not 
kinematically forbidden?' 

This is a good question because, if such cancellation 
did occur, lhe intensity in such a ~ef~ection x~ou~d depend 
only on the structure factor for that reflection. Then, 
we could use those intensities in a very direct way to 
contribute to structure determination. 

The answer, unfortunately, is no. 

Background 

In electron diffraction, reflections that have structure 
factor zero (kinematicaUy forbidden reflections), because 
of the presence of screw axes or glide planes in the 
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crystal, often appear with intensities that are as high 
as those of allowed reflections. This is because of 
the importance of dynamical diffraction or multiple- 
diffraction routes. However, there are certain conditions 
under which the intensity of diffraction into these kine- 
matically forbidden reflections is identically zero. These 
are known as dynamical extinctions. 

The conditions under which dynamical extinctions 
occur refer to both particular symmetry elements and 
particular orientations. The development of these ideas 
occurred in three papers (Cowley & Moodie, 1959; 
Miyake, Takagi & Fujimoto, 1960; Cowley, Moodie, 
Miyake, Takagi & Fujimoto, 1961); Gjaunes & Moodie 
(1965) then provided the definitive description in a paper 
that is clear, concise and correct. In order to discuss 
the case where reflections that are not kinematically 
forbidden are involved, we repeat, in the next section, the 
argument of Gjonnes & Moodie for forbidden reflections 
(generated by a single symmetry element). 

Dynamical extinctions appear in convergent-beam pat- 
terns as lines of extinction along the locus of the 
appropriate conditions. As a result, the following terms 
have all been used as synonyms for 'dynamical ex- 
tinction': Gjannes-Moodie line, G-M line, dark bar 
and black cross. These features have come to play an 
important role in symmetry determination in electron 
microscopy. See, for example, the work of Eades (1988) 
and Tanaka & Terauchi (1985). 

The Gjonnes-Moodie theory 

It has been shown by Cowley & Moodie (1962) that the 
amplitude of a particular diffracted beam can be written 
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Us(k) = C~-][F1F2F3...FnZ(k)], (1) however, in the case of the glide, the relation is 

where Ug is the amplitude of the diffracted beam, g, 
with the incident beam at orientation k. C is a constant. 
The summation is over all possible diffraction routes. 
The Fi are the structure factors for the individual steps 
in each multiple-diffraction route. [It would be more 
accurate, if more cumbersome, to write the product 
F(gl)F(g2)F(g3). . .  F(gn), where gl -k- g2 -k- g3 + . . .  + 
gn = 9.] Finally, Z is a function given explicitly by 
Cowley & Moodie (1962) that involves the excitation 
error at each vertex of the multiple-diffraction path. 

Ug(k) can be shown to be zero if it is possible to 
pair the terms in the summation such that each pair 
cancels. This requires two conditions. First, the function 
Z must be the same for the two paths. This requires 
the orientation of the incident beam to be such that the 
excitation error is the same at corresponding vertices 
between the two paths. Second, the products F1F2 . . .  Fn 
for the two paths must be of equal magnitude and 
opposite sign. 

[F1F2F3. . .Fn]A -- - [ F 1 F 2 F 3 . . . F n ] B .  ( 2 )  

For the second condition to be fulfilled, the two paths 
must be chosen so that each structure factor can be 
paired, 

]FiIA = IF j IB ,  (3) 

and at least one structure factor has opposite sign from 
its counterpart, 

F(hkl)  = (-1) 'F(h-kl) .  (8) 

In the special case of reflections along x and where l 
is odd, 

F(hO1) = (-1)tF(hO1) = -F(hOl)  = 0. (9) 

These are the kinematically forbidden reflections. 
Now, the multiple-diffraction routes can be paired 

using the mirror operation, since 

[F(hkl)[ = [F(h~l)[ (10) 

and the sign can be negative. In fact, when a multiple- 
diffraction route is paired with its mirror, we get 

[ F1F2F'3 " "']A = [ ( - 1 ) t ~ F I ( - 1 ) t = F 2 ( - 1 ) t a F 3  "" "]B 

= (-1)ez*[F1F2F3...]B. (11) 

Since ~ li is just the value of I for the final reflection, 
the negative sign will apply whenever l is odd in the 
final reflection. If the two multiple-diffraction routes are 
related by a mirror path, the final reflection must also 
lie on the mirror plane (k---0). Then, the two conditions 
(k = 0 for the paths to be paired, and l odd for each pair 
to cancel) can only occur for the forbidden reflection. 
Fig. 1 (a) shows one pair of multiple-diffraction routes. 

We are not concerned here with the details of the ex- 
citation error term. Suffice it to say that the cancellation 
will occur only along the exact mirror line. 

FiA ~ --FIB. 

For a complex structure factor, 

FA = - F B  

implies 
Ol A "-- 7I" -Jr- O~B . 

(4) The case of a twofold screw axis 

In the case of a 21 screw axis perpendicular to the 
electron beam, we can follow a similar argument. Here, 

(5) F( hkl) = ( -1)k  F ( -hk-[ ) . (12) 

This gives forbidden reflections for k odd when h = k = 0. 
(6) 

A search through International Tables for Crystallogra- 
phy (1992) for the individual symmetry operations that 
can be included in space groups reveals that only a 
twofold screw (21) or a glide plane (a, b, c, d, n) can 
give FA = --FB. 

The case of  a glide 

Consider first the case of a glide plane oriented 
parallel to the electron beam. Let the beam be oriented 
along z and the normal to the glide be along y. 

If, instead of a glide, there was a true mirror, the 
structure factor would have the mirror relation 

F(hkl)  = F(h-kl); (7) 

• • o • • • • . • • , • • • o 

(a) . . . .  (b) . . . .  (c) . . . .  

Fig. 1. Examples of the pairing of multiple-diffraction routes. (a) Glide 
plane parallel to the incident beam. The routes are paired by reflection 
in the glide plane. (b) Twofold screw axis perpendicular to the beam. 
The routes are paired by reflection in a plane through 9/2. (c) Glide 
plane perpendicular to the beam. Multiple-diffraction routes are paired 
by a rotation through 180 ° about a vertical axis through 9/2. To 
contribute intensity in this case the routes must involve out-of-zone 
reflections. 
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The diffraction routes are paired as shown in Fig. 1 (b). 
Each reflection hkl in one path is replaced by the 
symmetry-related reflection hkl. To complete the path, 
the order of the reflections is reversed. This is equivalent 
to making one path the reflection of the other in the line 
at g/2. The extinction occurs along a line at the exact 
Bragg angle for the reflection. 

The case of a glide plane perpendicular to the beam 

The third case treated by Gjonnes & Moodie is that 
of a glide plane perpendicular to the beam. In this case 
(beam direction along y), we have 

F(hkl) : ( - 1 ) t F ( h k l  -) (13) 

for a c glide. The routes are then paired in the way 
shown in Fig. l(c). 

Zero-layer diffraction 

If the projection approximation is valid, then the 
pairing corresponding to a glide parallel to the beam 
can also be applied to a screw axis and vice versa. (This 
is because the result 

row must have zero structure factor. It is perhaps not 
immediately clear that the same result applies if out- 
of-zone reflections are included; however, these cannot 
occur in the positions that would permit the rule to be 
broken. 

Reflections that are not forbidden 

We can now give two arguments to show that can- 
cellation of multiple-diffraction routes cannot occur for 
reflections that are not kinematically forbidden. 

First argument 

Until now, we have considered pair-wise cancellation 
in the presence of a single symmetry element. Suppose 
that, by looking at more complex space groups with 
several symmetry elements, we could find a case where 
we could develop a relation between the structure factors 
that would allow us to pair the multiple-diffraction routes 
for a reflection that is not forbidden. Even in this case, 
the intensity diffracted would not depend only on the 
structure factor for that one reflection: the unpaired 
routes would not now include (in general) a reflection 
with zero structure factor. 

IF(hkt)l : I F ( h k T ) l  (14) 

that applies to all space groups gives an additional 
relation provided that all reflections are in the plane.) 

This gives rise to dynamical extinctions along two 
perpendicular directions: a black cross. 

Completing this argument 

Thus far, we have reproduced the argument of Gjonnes 
& Moodie. We consider one additional point. Gjannes 
& Moodie say that all multiple-diffraction routes can be 
paired so that each pair cancels. However, there are some 
routes that cannot be paired. The multiple-diffraction 
routes are paired by relating one member of the pair 
to the other by a symmetry operation. This cannot be 
done for a multiple-diffraction route that transforms into 
itself. Such routes do exist. Examples for both glide and 
screw are shown in Fig. 2. The existence of these routes 
does not invalidate the conclusion given above, however, 
since such routes include at least one step for which F---0 
(see below). A multiple-diffraction route that mirrors 
into itself includes at least one kinematically forbidden 
reflection and the Gjonnes-Moodie rules are preserved. 

Gjonnes & Moodie did not draw attention to these 
non-pairable routes; probably they considered the point 
to be obvious. However, we can use it in what follows. 

It is easy to see that the unpaired routes must include 
a forbidden reflection, provided that the route is in the 
zero layer, since every alternate reflection along the 

Second argument 

In order to pair the multiple-diffraction routes, we 
must have a relation of the kind F~ = - F  j, which can 
be used to form the pairs. Now, relations of this kind, 
as seen above, are always of the kind 

h F Fi = ( - 1 )  ~., (15) 

and the index of the observed reflection, 

h 9 = ~--~hi, (16) 

must be odd if the sign of the product is negative. 
Therefore, for the observed reflection itself, we must 
have 

Fg = -Fg = 0. (17) 

ii!ii 
(a) . . . .  (b) . . . .  (c) . . . .  

Fig. 2. Examples of multiple-diffraction routes that cannot be paired. 
Diagrams (a), (b) and (c) correspond to the symmetry operations of 
Figs. l(a), (b) and (c), respectively. 
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The pairing condition itself implies that the structure 
factor of the observed reflection is zero. Therefore, we 
can conclude that the supposition of the previous section 
is false. No combination of symmetry elements can give 
rise to a pairing rule for an allowed reflection. 

Summary and concluding remarks 

In electron diffraction, it is difficult to use experimental 
intensities to solve crystal structures. This is because - 
unlike the case for X-rays - the intensity of a reflection 
does not depend only on the structure factor for that 
reflection but, through the complexities of dynamical 
diffraction, on many structure factors. 

However, there are cases where the dynamical- 
diffraction multiple-diffraction routes can be shown 
to contribute nothing to the diffracted intensity. 
Unfortunately, these dynamical extinctions occur only 
when the structure factor for the observed reflection is 
itself zero. 

Therefore, the idea that, by looking in specific cir- 
cumstances and at a specific orientation, we could find 
an experimental intensity that would depend only on the 
structure factor for the observed reflection turns out not 
to be fruitful. The student asked a good question but 
one with an unhappy answer. 

This conclusion should not be taken to mean that there 
are no methods of using electron diffraction intensities 
for crystal structure determination, only that the particu- 
lar method proposed does not work. There are several 

ways of determining structure factors from electron 
diffraction. These have been reviewed by Gjannes, Olsen 
& Matsuhata (1989) and Spence (1993). One of these 
methods in particular is related to the ideas of this 
paper: the Bristol group (Vincent & Exelby, 1994) has 
found situations where the intensities may be interpreted 
kinematically - although unfortunately only for high- 
order reflections. 

I thank Jon Gjonnes for helpful comments. This 
work and the Center for Microanalysis of Materials are 
both supported by grant DEFG02-91ER45439 from the 
Department of Energy. 
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Abstract 

The performance of an X-ray optical system often 
depends critically on the local angular divergence of 
the X-ray beam. For example, in systems for radiog- 
raphy, tomography and diffraction topography, the 
angular divergence of the incident beam at a point in 
the sample determines the limiting spatial resolution. 
In this paper, formulas are derived for the local 
divergence in the diffracted beam of the non- 
dispersive asymmetric reflection double-flat-crystal 
monochromator, illuminated by synchrotron or 

characteristic radiation. The formulas are analyzed 
to determine the general behavior of the local 
divergence as a function of the asymmetry factors of 
the crystal reflections. For synchrotron radiation, 
one surprising conclusion is that the local divergence 
of the magnifying monochromator is always greater 
than that of the symmetric monochromator, signifi- 
cantly so for even moderate magnification factors. 
This result, which contradicts a claim in the litera- 
ture, is attributed to a prismatic property of asym- 
metric reflection that has not previously been 
identified. 


